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Abstract. Over 100 high lying level energies of the lowest electronic states X1Σ+
g and a3Σ+

u in Cs2 are
determined in a Λ-like scheme two-colour photoassociation spectroscopy. The results are analyzed with
a coupled channel model using an asymptotic approach, based on nodal lines. From this analysis we
determine the long range dispersion coefficient C6 to 6846.2±15.6 a.u. We also obtain the first experimental
determination of the amplitude of the asymptotic exchange term.

PACS. 34.20.-b Interatomic and intermolecular potentials and forces, potential energy surfaces for colli-
sions – 32.80.Pj Optical cooling of atoms; trapping – 03.65.Ge Solutions of wave equations: bound states

1 Introduction

Over the last decade, the development of laser cooling and
trapping techniques made the study of interactions inside
ultracold dilute gases possible. This has led to the ob-
servation of Bose-Einstein condensation in atomic gases
and it has also resulted in a large survey of two-body in-
teractions. Ultracold atomic samples are powerful tools
to probe collisional properties [1] as well as to investigate
molecular states [2,3]. At ultracold temperatures achieved
in magneto-optical traps, a single parameter, the s-wave
scattering length characterizes entirely elastic two-body
interactions. This quantity images the whole two-body in-
teraction potential, and is very sensitive to its asymptotic
part, which is also crucial for the binding energy of the
most weakly bound levels of the ground state potentials.

Photoassociation (PA) in cold atomic samples pro-
vides a high resolution spectroscopic method which en-
ables precise study, e.g. of the first electronically excited
states in alkali dimers [4]. PA spectroscopy offers a novel
method to analyze long-range molecules [5], that are quite
difficult to reach by standard ways [6,7]. PA has also
led to cold molecule formation [8]. Measurements of PA
cross-sections enabled the derivation of collision wavefunc-
tions, extrapolated to zero-energy to evaluate the scatter-
ing length [9,10]. Multi-photon processes have also been
applied in cold atomic samples in ladder-like [11] and
Λ-like schemes [12–14]. A useful theoretical treatment
of one and two-colour photoassociative spectroscopy has
been presented in [15,16]. The richness of two-colour line-
shapes (Fano profiles, optical Feshbach resonances) has
been demonstrated in Cs experiment [17].

We have measured and analyzed the energies of more
than 100 high lying levels of the lowest electronic states

a e-mail: pierre.pillet@lac.u-psud.fr

of Cs2. In these levels, which are very close to the disso-
ciation thresholds, the two nuclei spent most of the time
at large internuclear distances, in the so-called asymptotic
region. In this region, the atoms keep some individuality
and their interaction can be described with a much higher
precision than in the inner region. In fact, for the molec-
ular levels discussed here and for the continuum states
as well, the asymptotic part of the potential curve is by
far the most important. Usually, the repulsive part of the
potential is not known with sufficient high precision to
determine the phase accumulated by a wavefunction to a
small fraction of π.

To account for experimental data, it is in general nec-
essary to modify the inner part of the potential, to fit
the chosen parameters, and to control the way in which
this potential is linked to the asymptotic part of the po-
tential. To avoid these delicate tasks, we have chosen an
asymptotic method. By this we mean that the Schrödinger
equation is solved in the asymptotic region only, as it was
done in [18]. The effect of the inner potential is expressed
as boundary conditions on the wavefunctions. More pre-
cisely we impose to the wavefunctions to vanish at some
nodal lines located near the frontier of the asymptotic re-
gion [19]. These lines themselves are adjustable parame-
ters which are fitted to the experimental results. In the
present case, the data are precise and numerous enough
to determine also the main parameters of the asymptotic
potential.

The experimental set-up is described in Section 2. The
problem of the line assignment is discussed in Section 3.
We then describe the asymptotic model that we used for
the analysis of the data (Sect. 4). The fitting procedure
and the different fits that we performed are presented in
Section 5. The results are detailed in Section 6, where we
show in particular that neglecting spin-spin and second-
order spin-orbit interactions is fully consistent.
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Fig. 1. Coupling scheme for two-photon PA. The two laser
fields are denoted L1 and L2. The excited molecular state
is called |1〉 and the ro-vibrational level at the ground state
asymptote is called |2〉. The grey shaded area above the lowest
hyperfine asymptote (3+3) represents the thermal distribution
of the atoms of the MOT in the continuum states |0〉.

2 Photoassociation scheme

The two-colour photoassociation process and experimen-
tal set-up were described in detail in previous arti-
cles [17,20,21]. Cesium atoms are loaded out of the back
ground gas into a standard magneto-optical trap (MOT).
Atoms within the MOT are illuminated with two photoas-
sociation laser fields L1 and L2 with frequencies ν1 and
ν2 respectively. The fields are provided by a Coherent 899
ring titanium-sapphire laser and a DBR diode laser (SDL
5712-H1).

The laser field L1 couples a continuum state of two
colliding cesium atoms, |0〉, to a single hyperfine and ro-
vibrational level |1〉, selected in the v′ = 1 vibrational
manifold of the electronically singly excited molecular
state (6 2S1/2 + 6 2P3/2) 1u [21]. The colliding atoms are
prepared in a |0〉 state either by using a dark SPOT or by
depumping the MOT before PA into the lower hyperfine
state. The PA signal towards the 1u state is then larger
when using atoms populating the higher hyperfine level
only. Laser L2 is frequency tuned to probe resonances
between |1〉 and some ro-vibrational Cs2 levels |2〉 near
the (6 2S1/2 + 6 2S1/2) asymptotes. The coupling scheme
is sketched in Figure 1.

Different approaches to determine level energies by
two-colour photoassociative spectroscopy were discussed
in [17]. As it is shown in this reference, resonant excitation
by L1 of the intermediate level |1〉 is especially favourable
to high precision spectroscopy of molecular levels |2〉. In
the absence of any resonant coupling by L2, the interme-
diate level |1〉 is populated and Cs2 molecules are formed
either in the lowest triplet state a3Σ+

u or in the molecu-
lar ground state X1Σ+

g by spontaneous emission. These
molecules are ionized by resonance enhanced two-photon
photoionization and the Cs+2 ions are detected with mi-
cro channel plates. If a resonance between |1〉 and |2〉
is reached by tuning ν2, a dark resonance is formed be-

tween |0〉, |1〉, and |2〉, which avoids the population of
|1〉 and consequently the Cs2 formation. We have checked
that direct population of |2〉 by a stimulated Raman tran-
sition has only a negligible influence on the Cs2 forma-
tion under our experimental conditions. Therefore, the
resonance is observed as a dip in the Cs+2 ion signal. An
overview of a large two-colour photoassociation spectrum
is given in Figure 2, and a zoom is reported in Figure 3.

The energy with respect to the lower hyperfine asymp-
tote (3+3) of the observed molecular levels is determined
by measuring the difference frequency ∆ν = ν1−ν2. In our
experiment, this is possible with an uncertainty of ±3 MHz
by comparison of both laser fields in a Fabry-Perot cav-
ity [17]. As it was shown in the latter reference, the mea-
sured ∆ν are systematically too small in comparison with
the actual binding energies, due to the finite energy dis-
tribution of atoms in the MOT, which leads in average to
a positive collision energy of a few MHz. In consequence,
the measured ∆ν has to be increased by 3.5 ± 4 MHz.

3 Spectroscopic study

By measuring the positions of levels close to the dissoci-
ation thresholds, for which in a classical picture the in-
ternuclear distance remains most of the time very large,
we investigate in fact the asymptotic region of the lowest
electronic states X1Σ+

g and a3Σ+
u states of Cs2. In this

region, both states are strongly coupled by the atomic hy-
perfine interaction, which is very strong in Cs2 (e.g. [22]).
For this reason and because of the small vibrational spac-
ing induced by the high mass of Cs, the spectra in the
asymptotic region are expected to be dense and difficult
to interpret.

To identify the levels, we use an asymptotic descrip-
tion of the molecular states, that is to say we use two-atom
states. The internal quantum numbers of the two atoms,
lα, sα, jα, iα and fα, are good quantum numbers; α = 1, 2
denotes the atom, lα and sα are orbital and spin angu-
lar momenta, jα is the fine structure quantum number,
iα is the nuclear spin, and fα is the total angular mo-
mentum of each atom. The quantum numbers f and �,
where �� is the angular momentum of the rotation of the
nuclei and �f = �f1 + �f2, are also good quantum numbers,
as well as the total angular momentum F and its pro-
jection MF on a space-fixed axis, where �F = �f + ��. In
the absence of external field, the levels are degenerate
in MF . In such a description, a molecular state writes:
|γf�FMF 〉, where γ ≡ l1, s1, j1, i1, f1, l2, s2, j2, i2, f2. In
the whole asymptotic region, that is to say for R � 15a0,
the quantum numbers f and � remain approximate good
quantum numbers. However, it is recalled that, at short in-
ternuclear distances, the spin-spin and second order spin-
orbit interaction which is especially large in the a3Σ+

u

state [23,24] weakly couples different � and f (but due
to the permutation symmetry, one keeps a given parity
p = (−1)�+�1+�2 [25,26]).

In our experiment, the number of accessible hyper-
fine potentials is strongly limited by the choice of the
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Fig. 2. Overview of the two photon spectrum for f = 6 levels. The upper spectrum shows the absorption of the laser L2 through
an iodine cell, which allows us to calibrate very roughly the spectrum. The position of the hyperfine asymptotes (3 + 3) and
(3 + 4) are indicated as vertical lines. The assigned rotational progressions are reported below the spectrum. Positive lines
correspond to direct PA due to the laser L2, and the states they correspond to are also depicted. The shaded area emphasizes
the rotational series zoomed in Figure 3.

Fig. 3. Rotational series of a vibrational level located at about
0.6 cm−1 below the hyperfine asymptote (3 + 3), measured
by two-colour PA. The quantum number � characterizes the
molecular rotation of the nuclei.

intermediate level |1〉. Selection rules for the electric dipole
coupling between |1〉 and |2〉 allows us to avoid overlap-
ping structures and simplifies greatly the interpretation
of the recorded spectra. We have chosen the 1u poten-
tial curve for this purpose, because each vibrational level
v′ offers well separated sub-levels, that have well specified
quantum numbers (f ′, m′

f , F ′) (m′
f denotes the projection

of f ′ onto the molecular axis). This splitting of the vibra-
tional levels is due to a strong hyperfine and rotational
coupling, which was examined in detail previously [21].
We used for the spectroscopic experiments three particu-
lar well separated lines of the v′ = 1 structure of the 1u PA
spectrum, which are shown in Figure 4. The corresponding
levels have been shown to correspond to more than 75%
to the sets {7, 7, 7,−}, {5, 5, 5,−}, or {6, 6, 6, +}, each set
giving the values of f ′, m′

f , F ′ and the sign of the par-
ity p [27].

Fig. 4. Detail of the structure of the v′ = 1 line of the 1u spec-
trum, showing the three lines used in the present experiment.

The levels of the ground state potentials that can be
observed in our experiment are those which are coupled by
the light of the laser L2 to these three particular 1u levels.
Selection rules impose first that the parity of the � value is
conserved. This explains the appearance of even � only in
Figure 3, since in this case, the state |1〉 corresponds to the
set {7, 7, 7,−}, that is to even � values. The selection rules
also impose that F ′ − F = 0,±1 and f ′ − f = 0,±1. One
can show that some electronic states, namely those with
f = 8, 7, 5, 3, 1 and even � and those with f = 6, 4, 2 and
odd � correlate only to the a3Σ+

u state (see Fig. 6).
Thus, ungerade symmetry is kept at any internuclear dis-
tance. Consequently, dipole coupling of these states to the
1u is thus forbidden. Furthermore, we have calculated the
dipole coupling between the main component of the de-
composition of the 1u states in a |γ′f ′

1f
′
2f

′m′
fF ′M ′〉 state

basis (in the three cases, the main component represents
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Fig. 5. Overview
of measured levels
and their assignment.
The rotation quan-
tum number � char-
acterizes the rotation
of the nuclei. The
zero energy is taken
at the lowest asymp-
tote (3 + 3).

more than 40% of the decomposition). For the observed
� values, the coupling strongly favours the quantum num-
bers f = 4, F = 4 (resp. f = 5, F = 5 and f = 6,
F = 6) when starting from the {5, 5, 5,−} 1u level (resp.
{6, 6, 6, +} and {7, 7, 7,−}).

More than 100 asymptotic levels of the coupled elec-
tronic states X1Σ+

g and a3Σ+
u were identified and mea-

sured in a 3.5 cm−1 energy interval below the highest hy-
perfine asymptote (4 + 4). Rotational angular momenta
� up to 6 were observed. An overview of the data is given
in Figure 5. Levels with positive energies are located above
the lowest hyperfine asymptote and are subject to predis-
sociation due to coupling to energetically lower hyperfine
channels. The level energies are listed in the appendix.

The uncertainty of the level energy with respect to the
lowest hyperfine asymptote is ±12 MHz for the f = 6 lev-
els and ±24 MHz for the others. It includes possible er-
rors from the frequency measurement, the uncertainty of
the determined line shift due to the thermal distribution
of atoms in the MOT and errors from the determination
of the line position, which is limited by the noise of the
Cs+2 signal [17]. The f -dependence of the uncertainty sim-
ply accounts for slightly different experimental conditions
and signal-to-noise ratios.

4 Multichannel asymptotic model

The asymptotic Hamiltonian writes:

Hasympt(R) = − �
2

2µR

∂2

∂R2
R +

��2

2µR2
+ Helec(R) (1)

where Helec(R) contains the atomic hyperfine structure,
the electrostatic interaction and the exchange interaction.
Multipole expansion of electrostatic interaction is used,
including so-called damping coefficients fn(R) [28]:

∑
n=6,8,10,12

fn(R)Cn/Rn (2)

where the damping coefficients are given by

fn(R) =
[
1 − e−a(R−nb)

]n

(3)

and the asymptotic exchange interaction [29], expressed
in the Hund’s case (a), writes

(−1 + 2S)DRγe−2αR (4)

where S denotes the molecular spin, and where α is related
to the ionization energy by α =

√
2Eion. The spin-spin

and second-order spin-orbit interactions are not included
(see discussion later). This Hamiltonian mixes the states
|γf�FMF 〉 with different γ and the energies are degener-
ate in F and MF . Any wavefunction can be written in a
fragmentation channel basis [21,26]:

Ψ total
f� (�R) =

∑
γ

Ψγf�(�R)Gγf�(R)/R. (5)

The Schrödinger equation leads then to a system of cou-
pled equations for the radial components Gγf�(R) of the
multichannel wave function, that we solve in the asymp-
totic region only, that is for R > R0, where R0 is of the
order of 15a0. This is not only the region where the above
form of the Hamiltonian is valid but also the region where
the hyperfine coupling is active. In equation (5), the elec-
tronic states Ψγf�(�R) must form a basis set which can be,
for instance, a set of |γf�FMF 〉 states (“uncoupled” ba-
sis), but it could also be the set of adiabatic potential
states resulting from the diagonalization of Helec (“adia-
batic” basis). In the former case, the system of radial cou-
pled equations have a very straightforward matrix form,
whereas in the latter case one has to include the so-called
“kinetic coupling” terms, which require the knowledge at
any R of the eigenvectors of Helec.

The principle of our theoretical treatment is to express
the effect of potentials below R0 as boundary conditions
on the radial wave functions. The inner part of the molecu-
lar potentials yields near R0 an accumulated phase [13] to
the vibrational wavefunctions, or, in other words, it deter-
mines the positions of the nodes of these wave functions.
Since the levels we study are weakly bound, experimental
energies lie in a very narrow range (3.5 cm−1) compared to
the depth of the two potentials of the ground state (about
250 cm−1 and 3500 cm−1 for the X1Σ+

g and a3Σ+
u poten-

tials, respectively). Then the positions of the nodes of the
radial wavefunctions are expected to depend linearly on
the level energy [19], so that one will use nodal straight
lines (see Fig. 7).

In the case of a single channel problem, the wavefunc-
tion has only one radial component and one has to con-
sider one nodal line only. The variation with � of the node
positions is easily shown to be proportional to �(�+1), for
instance by using a WKB formula including a centrifugal
energy potential. The nodal line can thus be described by:

R�(E) = R0 + AE + B�(� + 1). (6)

The fact that B does not depend on � also appears in the
WKB treatment.
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Fig. 6. Detail of the potential curves in the asymptotic re-
gion. The highest potential curve (f = 8, I = 7) has been
subtracted to all ones. To each curve is associated the frac-
tion of the atomic hyperfine splitting which characterizes its
relative position in the inner region (see text).

In the multichannel case, the situation is more com-
plex. As already mentioned, at very long internuclear dis-
tances, the good quantum numbers are f1, f2, f , F and
MF and the energies are degenerate in F and MF . Still
in the asymptotic region, but at shorter distances, the
atomic hyperfine coupling becomes small compared to
the exchange interaction. Around R0 � 15a0, the ger-
ade/ungerade character becomes almost well defined and
the electronic spin S and the nuclear spin I become good
quantum numbers (see Fig. 6). Thus around R0, boundary
conditions are settled on nodal straight lines described by:

RISf�(E) = R0
ISf + AISfE + BISf�(� + 1). (7)

The coupled radial equations are solved using the follow-
ing boundary conditions:

(i) on the chosen nodal lines, radial components of the
wavefunctions written in the adiabatic basis have to
vanish;

(ii) as R goes to infinity, bound level wavefunctions have
to vanish and the wavefunctions of resonances lying
above the lowest dissociation limit have to be purely
outgoing waves, according to the formalism of Siegert
states [30]. Bound levels and resonances are treated
in the same way using complex energy calculations.

The numerical integration is performed starting from large
R values and in the uncoupled basis |γf�FMF 〉. A set of

linearly independent solutions fulfilling conditions (ii) is
calculated and the level energies or the resonance posi-
tions and widths are obtained from cancellation of the
determinant of the matrix expressing conditions (i). Cal-
culating in this way theoretical energy values and compar-
ing them to the measured values in a least square fit with
the measured energies for levels and resonances leads to
simultaneous determination of the nodal lines and of se-
lected molecular parameters of the asymptotic potentials.

5 Statistical treatment

The fitting procedure consists in a non-linear least square
fit, minimizing the reduced chi-square,

χ2
red =

1
N − k

∑
i=1,N

(
Eexp

i − Ecal
i

)2

σ2
i

(8)

where Eexp
i and Ecal

i are N observed and calculated ener-
gies and σi denotes the experimental uncertainty in the de-
termination of Eexp

i , k being the number of parameters. As
mentioned above, we provide to the fitting procedure three
parameters for each nodal line: an origin R0, a slope A,
and the rotation dependence of the origin given by B. Con-
sequently, in order to describe the nodal lines associated
with the {f = 4, +}, {f = 5,−} and {f = 6, +} mani-
folds that we measured, we provide to the fitting proce-
dure 9 parameters associated with the nodal lines of each
manifold. We also consider as adjustable some parameters
related to the asymptotic potential: the dispersion coeffi-
cients, C6, C8, C10, and the amplitude D of the exchange
interaction. Thus the fit involves in principle 31 parame-
ters to fit 103 experimental energies.

In view of such a high number of parameters, stochas-
tic fitting procedure appears to be more relevant than de-
terministic fitting procedures, such as gradient or simplex
procedures. It has been implemented using self-adaptative
evolution strategies [31], which are known to be the most
efficient among evolutionary algorithms [32]. One run af-
ter the other, this stochastic algorithm provides parameter
sets which lie in a wide range of quite reasonable parame-
ters. These sets are then given as initial guess to a deter-
ministic minimum seeking. Finally, in order to determine
uncertainties on the parameters determination, we com-
puted the complete covariance matrix, derived from the
Hessian matrix calculated at the best fit point.

First attempts have shown that the number of param-
eters needs to be reduced to achieve convergence. As all
singlet potential curves are degenerate in the inner region,
we use the same nodal line for all sets with S = 0, reduc-
ing the number of parameters to 25. It also appears that
the 16 experimental energies labeled by f = 5 do not fix
correctly the 6 corresponding nodal line parameters: sup-
pressing these data together with these parameters leads
to 19 parameters and 87 level energies. Figure 6 shows
that near 15a0, the adiabatic triplet potential curves are
parallel and obey a very regular arrangement, their energy
differences ∆V (I, f) being simply multiples of the eighth
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Fig. 7. Asymptotic part of one component (a triplet one, that
is with ungerade character at short distance) of a typical mul-
tichannel wave function written in the adiabatic basis. Inner
boundary conditions are settled near 15a0. The inset shows
the alignment, on the corresponding nodal line, of the nodes
of several such wavefunctions close to the (3 + 3) asymptote.

of the atomic hyperfine splitting, which can be found in
Figure 6. Assuming that molecular hyperfine structure re-
mains correctly described by the atomic Hamiltonian up
to the triplet inner potential wall, the adiabatic triplet
curves are parallel for R < R0. The relative positions of
the adiabatic triplet curves imply very simple relation-
ships between the different triplet nodal lines. First, they
have the same slope A1 and the same �-dependence B1.
Moreover, the values R0

ISf at the origin obey the following
law:

R0
ISf = R0

I=7 S=1 f=8 −A1∆V (I, f). (9)

The number of parameters is then reduced to 10. This
reduction has been also justified from a purely statistical
point of view, using local linear multiple regression, that
we do not detail here.

Even though, the convergence of the algorithm remains
laborious and it appears that it is probably impossible to
safely determine simultaneously the four chosen parame-
ters of the asymptotic potential. It is clear that our data,
which concern levels close to the asymptote, with outer
Condon points of the order of 25−50a0, yield more infor-
mation on the C6 coefficient than on the others. Thus, we
do a first fit by keeping only C6 as adjustable parameter
and by fixing C8, C10 and D. For C8 and C10 we used the
values C8 = 9.630× 105 a.u. and C10 = 1.35912× 108 a.u.
obtained by Amiot and Dulieu [33], which performed
the most precise determination (2% uncertainty) of these
parameters. To be fully consistent, we choose the same pa-
rameters as these authors. We introduced the same damp-
ing coefficients and we used the same theoretical asymp-
totic exchange term, with (in atomic units) D = 0.00110,
α = 0.535 and γ = 5.542 [29]. A rapid convergence of
the algorithm leads then to a reduced chisquare value of
χ2

red = 0.777 (Tab. 2, fit 1). We checked the local linear-
ity of calculated energies with respect to the parameters,
and under that conditions, uncertainties on the values of

Table 1. Estimated uncertainties one would obtain on some
adjusted parameters if fixing the others, denoted by an × sym-
bol. The whole set of nodal lines is described by six parameters.
The results of Amiot and Dulieu are recalled for comparison.

model C6 C8 C10 D

asymptotic model 2% 48% 61% 40%

1.2% 13% 46% ×
0.20% × × ×
0.25% × × 9.7%

reference [33] 1.5% 2% 2% ×

the adjustable parameters are obtained from the second
derivative matrix, the so-called Hessian matrix, in 7 di-
mensions and from the associated covariance matrix. The
obtained value of C6 is 6840.8 a.u., with a standard uncer-
tainty of 13.6 a.u. which accounts for correlations between
all parameters [34,35].

It is also possible to obtain an estimation of the un-
certainties one would obtain on other parameters by cal-
culating the Hessian matrix in the n-dimensional space
(with n > 7) including these parameters. The results are
summarized in Table 1. As the uncertainties on C8 and
C10 are much larger than those of reference [33], we will
keep the values of these two parameters as fixed. The op-
timized C6 value obviously depends on these fixed values.
This dependence remains however linear in a large range
and this justifies our statistical treatment of uncertain-
ties. With the obtained numerical values, this dependence
writes:

∆C6 = 310∆C8/C8 + 133∆C10/C10 + 53.3∆D/D (10)

where ∆C8 (resp. ∆C10, ∆D) stands for a variation of
C8 (resp. C10, D) from the value reported in Table 2 (fit 1).
Equation (10) can also be used to deduce the uncertainty
on C6 which comes from the uncertainty of the fixed pa-
rameters. Adding quadratically the independent uncer-
tainties, we find an uncertainty on the C6 value of 15.2 a.u.

At this point of the study, it is possible to re-introduce
the f = 5 data that we leaved previously. Thanks to the
introduction of the relationship between the triplet nodal
lines, no additional parameter is then required. A new
fit (Tab. 2, fit 2), with 7 parameters and 103 level ener-
gies, gives χ2

red = 0.727, with a C6 value of (6841.77 ±
12.93) a.u., and with a dependence on the fixed param-
eters almost identical to the previous one. Taking into
account the 2% error on the C8 and C10 values, we obtain
(6841.8± 14.5) a.u.

The asymptotic exchange interaction plays an im-
portant role in the calculation, as it fixes the mixing
of the different channels which is far from negligible.
It seems therefore possible to determine the parameter
D of equation (4), as suggested by Table 1. A final fit
with 103 level energies and 8 parameters (Tab. 2, fit 3)
gives χ2

red = 0.726, with C6 = (6846.2 ± 13.7) a.u. and
D = 0.001187 ± 0.000086 a.u. The final uncertainty on
C6, including C8 and C10 errors, is 15.6 a.u., whereas the
the final uncertainty on D is 0.000088 a.u.
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Table 2. Different fits discussed in Section 5. Reduced χ2 values are given, which account for the number of adjusted parameters
(see text). Fixed values are between brackets. All uncertainties are one-parameter standard uncertainties. Therefore, they do
not include the uncertainty induced by the fixed parameters: only the final uncertainty σfinal

C6 accounts for the uncertainties
on C8 and C10 given in reference [33]. Every fixed value is taken from reference [33]. R0

I=5,S=1,f=4 has been used in the fits

instead of R0
I=7,S=1,f=8 like in equation (9). The correspondence is straightforward, just by changing the reference potential in

the equation defining the nodal lines.

fit 1 fit 2 fit 3

levels 87 103 103
parameters 7 7 8
χ2

red 0.777 0.727 0.726

coefficients
C6 (a.u.) 6840.76 ± 13.65 6841.77 ± 12.93 6846.17 ± 13.70
C8(105 a.u.) [9.630] [9.630] [9.630]
C10(108 a.u.) [1.35912] [1.35912] [1.35912]
C12(1010 a.u.) [2.901] [2.901] [2.901]
D(10−3 a.u.) [1.10] [1.10] 1.18722 ± 0.08633

nodal lines
R0

S=0
(a0)

15.075539
±0.003503

15.075853
±0.003316

15.095202
±0.019267

AS=0

(10−3a0/cm−1)
−7.5867
±0.1902

−7.5350
±0.1801

−7.5819
±0.1834

BS=0

(10−5a0)
5.4281
±0.5475

5.2977
±0.5135

5.3113
±0.5124

R0
I=5,S=1,f=4

(a0)
15.291023
±0.005284

15.291382
±0.005009

15.263980
±0.027961

AS=1

(10−3a0/cm−1)
−17.8135
±0.1866

−17.8205
±0.1785

−17.6710
±0.2355

BS=1

(10−5a0)
10.3267
±0.4869

10.3515
±0.4608

10.3948
±0.4690

σfinal
C6

(a.u.) 15.2 14.5 15.6

6 Discussion of the results

The reduced chi-square values of the three fits of Table 2
are all smaller than one. This might indicate that the ex-
perimental uncertainties on energy values have been over-
estimated, but it also reflects the quality of the model and
of the fit [34]. This low chi-square value is also taken into
account in the parameters uncertainties. Namely, we use a
standard procedure which amounts to a global scaling of
experimental uncertainties such that the chi-square value
would be one. The three C6 values are fully compatible.
It is worthwhile noticing that the introduction of the data
corresponding to the {f = 5} manifold (Tab. 2, fit 2) did
not either increase the reduced chi-square nor affect the C6

value: this is a strong indication of the prediction ability of
the model. One could calculate level energies correspond-
ing to all {f, p} manifolds. Scattering lengths can also be
calculated. For instance, we have calculated the scatter-
ing length associated with the the lowest asymptote of
the {f = 6, +} manifold which is usually denoted by a3,3,
which corresponds to zero-energy collisions between atoms
polarized in the lowest hyperfine state fα = 3, with the
maximum space-fixed projection Mfα = ±3. Using our
data, the calculation of this scattering length leads to un-
certainties so large that they make this determination ir-

Fig. 8. Comparison of the values and uncertainties of the dif-
ferent determinations of the C6 van der Waals coefficient of
cesium. The only ab initio value is the one of Derevianko et al.

relevant. Nevertheless, such large error bars on the scat-
tering length value should be very efficiently shrunken by
introducing in our study some collision data, more sensi-
tive to the scattering length.

The uncertainty we obtain on the final value of the
C6 coefficient is the smallest among the numerous deter-
minations presently available (see Fig. 8). The van der
Waals C6 coefficient of cesium has indeed been the ob-
ject of numerous studies, theoretical and experimental as
well, especially because of the numerous difficulties en-
countered before the achievement of Bose-Einstein con-
densation of cesium atoms [36]. The value that we obtain
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is in very good agreement with the most recent ones (see
Fig. 8). On the contrary, our value is not compatible with
the 6510±70 a.u. value we determined in [37] from the
analysis of the line intensity modulations in a PA spec-
trum. Several possible explanations of that discrepancy
are presently studied.

It is important to mention that our determination re-
lies essentially on experimental data. Excited molecular
states do not play any role in the analysis and we do not
use any ab initio potential, since reference [33] provides
a Rydberg-Klein-Rees (RKR) potential. We remind that
the adjusted C6 value depends on the chosen values of
the other parameters of the asymptotic potential, but the
dependence is linear in a large domain and can be calcu-
lated.

We have also obtained the first determination of the
exchange interaction term from experimental data. The
value is in good agreement with the ab initio value of
reference [29], 0.00110, for which no uncertainty was given,
and about twice smaller than the one of reference [38],
which found D = 0.00243 using the same values for α and
γ as we use.

Within our experimental precision, the asymptotic
model we developed here is fully justified. We recall here
the assumptions that have been made. Firstly, and this
assumption is supported by the model, we assume that,
near the frontier between inner and asymptotic regions R0,
the nodes of the radial multichannel wavefunctions, writ-
ten in the adiabatic basis, are straight lines. Secondly we
also made weaker assumptions, which could eventually be
avoided depending on the considered data set and on the
experimental precision. We use several a priori relations
between the different nodal lines involved in the analy-
sis: their value at the origin depends linearly in �(� + 1),
the nodal lines are the same for all singlet curves and the
triplet nodal lines are all parallel, their relative positions
depend in a simple manner on the relative positions of the
triplet potential curves near R0. Let us also mention that
we consider the usual model for the asymptotic potential,
with damped Cn (n = 6, 8, 10, 12) dispersion coefficients
and asymptotic exchange term and that we neglect in our
asymptotic Hamiltonian spin-spin and retardation effects.
The latter two effects are indeed completely negligible at
the interatomic distances relevant for the concerned bound
states and they are also completely negligible as compared
with the collision energies corresponding to the concerned
quasi-bound states.

Limitations of our asymptotic model could in fact es-
sentially arise from interactions which, in the asymptotic
point of view, are hidden in the inner region of the poten-
tial curves, such as the spin-spin and second-order spin-
orbit interactions. These interactions are known to be
sometimes very important in the cesium case, for instance
in collisions between ultracold cesium atoms [23]. These
interactions couple different f and � values and can be
responsible for very high inelastic collision rates [39,40].
In our treatment these interactions are somehow taken
into account in the determination of the nodal lines by a
fit on experimental data. However, they could in princi-

ple prevent the nodal lines from being straight lines, in
the case of zeroth-order quasi-coincidence of interacting
states. They could destroy the �(� + 1)-dependence of the
origin of the nodal lines and they could distord the sim-
ple relation between the triplet lines. Careful examination
of the residuals given by the fits does not indicate any of
these disturbing effects. In fact a single channel calculation
shows that for a typical bound state, the radial wavefunc-
tion is located at rather large distance (∼50a0), so that the
perturbation matrix element associated with these inter-
actions is below 10−5 cm−1. This is more than one order of
magnitude smaller than our experimental resolution, and
neglecting these terms does not perturb neither the level
energies nor the associated wavefunctions, which confirms
our analysis.

7 Conclusion
We have measured and assigned 103 energies of high lying
levels and near-threshold resonances of the ground state
of Cs2. These energies have been interpreted with the help
of only eight adjustable parameters. Six of them charac-
terize the nodal lines, which account for the inner part of
the potentials, which is not introduced in the calculations.
The other two parameters, the van der Waals C6 coeffi-
cient and the amplitude of the asymptotic exchange in-
teraction, characterize the asymptotic potential, together
with C8, C10, C12, which were fixed parameters in the fit.
From the asymptotic potential and the nodal lines pro-
vided by the analysis, one can in principle predict a lot
of other quantities such as near threshold levels and reso-
nances with different f and � values, or scattering lengths.
The good accuracy of the predictions has already been
tested by introducing in the fit a new set of data (f = 5).

The two-colour photoassociation scheme that we used
should allow further spectroscopic studies of ground
state potentials. In particular it should be possible to
complement the X1Σ+

g spectrum obtained by molecular
spectroscopy [33]. The asymptotic model will allow us to
predict the energy ranges to be investigated. For higher
resolution in the spectroscopy of the ground state poten-
tials, it would be interesting to use a Bose-Einstein con-
densate, in which the width of the two-photon photoasso-
ciation lines can be as low as one kiloHertz [41]. Frequency
calibration and energy measurements would certainly be-
come more difficult, frequency collisional shifts would have
to be taken into account, but increasing the experimental
precision would increase the precision on the determina-
tion of the parameters. Multiplets corresponding to differ-
ent F values could be resolved, allowing direct observation
of the influence of the second-order spin-orbit interaction
on level energies.

The results presented here illustrate very well the ef-
ficiency of two-colour photoassociation spectroscopy as-
sociated with an asymptotic model for the description of
near threshold bound and quasi-bound levels of the ground
state potentials of cesium. We obtained the first experi-
mental determination of the asymptotic exchange ampli-
tude, and a very accurate value of the van der Waals co-
efficient.
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Table 3. Experimental level energies with respect to the asymptote (f1 = 3) + (f2 = 3), measured by two-photon photoassoci-
ation, reported in cm−1. All energies take into account the systematic shift due to the thermal distribution of the atoms in the
MOT. Experimental uncertainties have been estimated to be 0.0008 cm−1 (24 MHz) for f = 4 and f = 5 levels and 0.0004 cm−1

(12 MHz) for f = 6 levels, due to different experimental conditions. Below each experimental energy is reported in italics the
corresponding residual (observed minus calculated energy difference), calculated from the fit 3 of Table 2.

f p � energy

residual

4 +1 4 0.288135

−0.000312

4 +1 2 0.282818

−0.000418

4 +1 0 0.280479

−0.000486

4 +1 4 0.231489

−0.000708

4 +1 2 0.223746

−0.000464

4 +1 0 0.220762

0.000558

4 +1 4 0.131475

0.000010

4 +1 2 0.121978

0.000419

4 +1 0 0.117662

0.000364

4 +1 4 −0.170641

0.001183

4 +1 2 −0.181867

−0.000184

4 +1 0 −0.186192

−0.000277

4 +1 4 −0.283949

−0.000408

4 +1 2 −0.298744

−0.000488

4 +1 0 −0.305567

−0.001017

4 +1 4 −0.371978

−0.000232

4 +1 2 −0.386977

−0.000220

4 +1 0 −0.392467

−0.001477

4 +1 4 −0.587732

−0.000072

4 +1 2 −0.602127

0.000122

4 +1 0 −0.609009

−0.000498

4 +1 4 −0.643434

−0.000622

4 +1 2 −0.659975

−0.000431

4 +1 0 −0.667342

−0.000604

4 +1 4 −1.113209

−0.000281

4 +1 2 −1.131525

0.000420

f p � energy

residual

4 +1 0 −1.140299

−0.000194

4 +1 4 −1.456668

0.000226

4 +1 2 −1.476865

0.000387

4 +1 0 −1.486747

−0.000749

4 +1 4 −1.715414

0.000224

4 +1 2 −1.736247

0.000624

4 +1 0 −1.746400

−0.000421

4 +1 4 −1.987344

0.000764

4 +1 2 −2.008622

0.000948

4 +1 0 −2.019942

−0.001163

4 +1 4 −2.465681

−0.000348

4 +1 2 −2.488703

0.000536

4 +1 0 −2.499954

−0.001152

4 +1 4 −2.741280

−0.000094

4 +1 2 −2.764730

−0.000003

4 +1 0 −2.774407

0.000417

5 −1 3 0.122666

−0.000258

5 −1 1 0.116123

0.000315

5 −1 3 −0.176746

−0.000001

5 −1 1 −0.183700

0.000078

5 −1 5 −0.276856

0.000008

5 −1 3 −0.295764

0.000183

5 −1 1 −0.306419

0.000144

5 −1 3 −0.339781

−0.000755

5 −1 1 −0.347402

0.000920

5 −1 5 −0.354826

−0.000044

f p � energy

residual

5 −1 3 −0.374119

0.000279

5 −1 1 −0.384425

0.001073

5 −1 3 −0.594053

0.000164

5 −1 1 −0.605528

−0.000901

5 −1 3 −0.661207

0.000734

5 −1 1 −0.673216

0.000718

6 +1 6 0.296305

−0.000257

6 +1 4 0.287746

0.000206

6 +1 2 0.282137

0.000095

6 +1 0 0.279646

−0.000381

6 +1 4 0.267385

0.0000166

6 +1 2 0.256153

0.000248

6 +1 0 0.251314

0.000312

6 +1 6 0.241256

0.000248

6 +1 4 0.228914

−0.000072

6 +1 2 0.221035

−0.000111

6 +1 0 0.217515

−0.000221

6 +1 4 0.124940

−0.000170

6 +1 2 0.115245

0.000077

6 +1 0 0.110777

−0.000113

6 +1 6 0.040116

−0.000312

6 +1 4 0.018298

0.000158

6 +1 2 0.004433

0.000548

6 +1 0 −0.002237

−0.000346

6 +1 6 −0.153935

0.001119

6 +1 4 −0.170398

−0.000062

f p � energy

residual

6 +1 2 −0.179912

0.000225

6 +1 0 −0.184366

−0.000004

6 +1 6 −0.268944

0.000153

6 +1 2 −0.307504

0.000314

6 +1 0 −0.314706

−0.000436

6 +1 4 −0.332876

−0.000323

6 +1 2 −0.345457

0.000017

6 +1 0 −0.351271

−0.000289

6 +1 6 −0.334478

−0.000487

6 +1 4 −0.357685

−0.000196

6 +1 2 −0.372691

0.000133

6 +1 0 −0.379727

−0.000256

6 +1 6 −0.562633

−0.000965

6 +1 4 −0.584139

−0.000263

6 +1 2 −0.598491

0.000439

6 +1 0 −0.605053

0.000117

6 +1 4 −0.664004

−0.000061

6 +1 2 −0.680546

0.000211

6 +1 0 −0.688730

−0.000741

6 +1 4 −1.146618

0.000091

6 +1 2 −1.165335

0.000352

6 +1 0 −1.174056

−0.000225

6 +1 4 −1.413306

0.000271

6 +1 2 −1.433054

0.000806

6 +1 0 −1.443212

−0.000643
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Appendix

Table 2 gives in details the best fit parameters obtained
in the different fits presented in Section 5. Standard un-
certainties are also given for all the adjusted parameters.

Table 3 reports all the experimental level energies in-
cluded in the fit, with respect to the asymptote (3 + 3).
All energies take into account the systematic shift of
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3.5 MHz due to the thermal distribution of Cs atoms in
the MOT [17], as mentioned in Section 2.

References

1. J. Weiner, V.S. Bagnato, S.C. Zilio, P.S. Julienne, Rev.
Mod. Phys. 71, 1 (1999)

2. W.C. Stwalley, H. Wang, J. Mol. Spectrosc. 195, 194
(1999)

3. F. Masnou-Seeuws, P. Pillet, Adv. At. Mol. Opt. Phys. 47,
53 (2001)

4. P.D. Lett, K. Helmerson, W.D. Philips, L.P. Ratliff, S.L.
Rolston, M.E. Wagshul, Phys. Rev. Lett. 71, 2200 (1993)

5. W.C. Stwalley, Y.-H. Uang, G. Pichler, Phys. Rev. Lett.
41, 1164 (1978)
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